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Background and motivation

Common elements in most Model Order Reduction (MOR)
techniques:

1. Spectral discretization

u(x, t) ≈
∑n

i=1
ai (t)ui (x) (1)

2. Projection 〈
vi ,R

(∑n

i=1
aiui

)〉
Ω

= 0 (2)
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Background and motivation

I One popular approach: first n left-singular vectors of M, i.e
ui = U(:, i) where M = UΣV T and

M =


u(x1, t1) u(x1, t2) · · · u(x1, tNt )
u(x2, t1) u(x2, t2) · · · u(x2, tNt )

...
...

. . .
...

u(xNx , t1) u(xNx , t2) · · · u(xNx , tNt )

 (3)

I These basis functions are optimal in the sense that no other
basis functions capture a greater proportion of kinetic energy
of the flow.
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Background and motivation

I Turbulence is a multi-scale phenomenon: large scale flow
features are broken down into smaller and smaller scales until
the scales are fine enough that viscous forces can dissipate
their energy.

I Application of any POD-based MOR strategy to a turbulent
flow is problematic because POD, by construction, is biased
toward the large, energy containing scales of the turbulent
flow.

I Reduced Order Models (ROMs) generated using only the first
most energetic POD basis functions are, therefore, not
endowed with the natural energy dissipation of the smaller,
lower energy turbulent scales.
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Background and motivation

Classical benchmark: Incompressible flow inside a square,
two-dimensional lid-driven cavity at Reu = 3× 104
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Background and motivation

POD basis functions of the lid-driven cavity

(a) u1 (b) u2 (c) u10

(d) u20 (e) u50 (f) u200
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Background and motivation

Percent of turbulent kinetic energy, e(t) ≡ 1/2
∫

Ω |u(x, t)|2 dx
captured by the first n basis functions, ui of the lid-driven cavity

n %
1 16.06
2 29.21
3 37.45
4 44.88
5 50.37

10 67.16
20 82.40
50 93.21

200 99.31
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Background and motivation

Standard POD-Galerkin ROMs of the lid-driven cavity

I ROM performance quantified using the turbulent kinetic
energy, e(t) ≡ 1/2

∫
Ω |u(x, t)|2 dx
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Proposed new approach

Basic idea: Instead of using just the most energetic POD basis
functions, include a few lower energy POD basis functions so that
dissipative scales are resolved.

I For example, consider we are interested in forming a n = 3
ROM.

I Standard approach: use the first 3 most energetic POD basis
functions, i.e. u1, u2, and u3

I Proposed Approach: u1, u2, and u5
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Proposed new approach

Generalization: We search for the n new basis functions in the
range of N standard POD basis functions (where N > n).

I If we label the n new basis functions as ũi
I We can write

Ũ = UX (4)

where X ∈ RN×n is an orthonormal (XTX = In×n)
transformation matrix and the basis functions are vectorized
and assembled as follows

U =
[
vec (u1) vec (u2) · · · vec (uN)

]
(5a)

Ũ =
[
vec (ũ1) vec (ũ2) · · · vec (ũn)

]
(5b)
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vec (ũ1) vec (ũ2) · · · vec (ũn)
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Proposed new approach

We have developed an algorithm for X that uses the turbulent
kinetic energy (tke) equation as a side constraint to the standard
POD/SVD snapshot approach. The algorithm is computationally
efficient and thus can be implemented using standard MATLAB
constrained optimization algorithms. Currently, our algorithm is
limited to steady Dirichlet, ambient flow or free-stream conditions
at infinity, or periodic boundary conditions.

[1] Balajewicz, M., Dowell, E., & Noack, B. 2012, “A Novel
Model Order Reduction Approach for Navier-Stokes Equations
at High Reynolds Number”, arXiv:1211.1720, (Under
consideration for publication in J. Fluid Mech.)
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Lid driven cavity, revisited
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Conclusions

I Our approach models small scales of the flow directly using
basis functions that are different from the standard POD basis
functions.

I For many boundary conditions, a computationally efficient
algorithm that can be implemented in MATLAB using
fmincon is available.

I Details, results from a second benchmark, and MATLAB code
are available online: arXiv:1211.1720 [physics.flu-dyn]
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